Home Ahead of print Instructions Contacts
About us Current issue Submit article Advertise  
Editorial board Archives Subscribe Login   
ORIGINAL ARTICLE
Year : 2020  |  Volume : 26  |  Issue : 4  |  Page : 205-210

Tissue engineering of a tympanic membrane graft using decellularized nasal septal mucosa seeded with tragus chondrocytes: a morphological In vitro study


1 Department of Otorhinolaryngology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
2 Department of Medical Biology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
3 Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey
4 Department of Otorhinolaryngology, Faculty of Medicine, Bahçeşehir University, Istanbul, Turkey

Correspondence Address:
Dr. Ozmen Ozturk
Istanbul Medipol University, Istanbul Medipol Hospital, Haydarpasa- Harem yolu, 34718, Kosuyolu, Kadikoy, Istanbul
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/indianjotol.INDIANJOTOL_181_20

Rights and Permissions

Objective: Tympanic membrane (TM) perforations require surgical repair with graft constituents. Tissue engineering which used cells, scaffold materials, and bioactive molecules facilitates an opportunity in otology for the synthesis of an ideal TM graft having proper mechanical possessions and high acoustic properties. The purpose of this study was to analyze the efficacy and feasibility of decellularized nasal septal mucosa (DNSM) seeded with tragus chondrocytes for in vitro regeneration of a TM graft material. Methods: A NSM scaffold constructed with decellularization was seeded with flow cytometry-characterized tragus chondrocytes. Cells were grown on NSM scaffold to produce an “artificial TM graft” (ATMG). Sections of untreated NSM (UNSM), DNSM, and ATMG were compared by histological examinations and immunohistochemistry analysis (i.e., total oxidant status [TOS] assay, cytokeratin K15 expression, Bcl-2, and tumour necrosis factor-alpha TNF-α). Results: Histological analysis of DNSM seeded with chondrocytes indicated a healthy tissue formation suggesting that a cytocompatible ATMG was produced artificially. When compared with UNSM and DNSM, low TOS level, high cytokeratin K15 expression, high Bcl-2, and acceptable TNF-α levels in ATMG samples indicated the presence of healthy chondrocytes and their proper integration to the scaffold with low risk of apoptosis. Conclusion: This study is a prospective investigation for ATMG engineering based on the patient's own tragal chondrocytes seeded over DNSM scaffold, the employed biological niche. The aim of supplementing an ATMG to the armamentarium of graft alternatives will lead to a significant potential for surgical convenience in otology.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed680    
    Printed16    
    Emailed0    
    PDF Downloaded116    
    Comments [Add]    

Recommend this journal